

www.sensirion.com Version 1 – June 2021 – Public D1 1/34

Application Note for Liquid Flow Sensors

Implementation Guide to the I2C Protocol

Summary
This document describes the main aspects of the I2C communication with Sensirion’s Liquid Flow Sensors and provides
instructions on how to implement the protocol on a controller system (master) for the communication with a sensor as the I2C
device (slave).

This document describes the general implementation of the I2C communication for the following liquid flow sensor series:

SLI, SLS, SLG, SLQ, LG16, LS32, LPG10

The implementation assumes a hardware I2C interface on the master device.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 2/34

Table of Contents
1. How to use this Guide ...4

2. Hardware Setup ..4

2.1 Communication Hardware ..4

2.2 Circuit Elements ...5

2.3 Level Shifter ...5

2.4 Hard Reset ...6

2.4.1 Hardware for Hard Reset...6

2.4.2 Reset Procedure..7

3. I2C Protocol ...8

3.1 Communication Protocol ..8

3.2 Handshake Procedure (Hold Master, clock stretching) ..9

3.3 Data Transfer Format ...9

3.4 I2C Address ..10

3.5 Data Types and Representation...10

3.6 Two’s Complement...10

3.7 Checksum ..11

3.8 Sensor commands ...12

3.9 Control/Status Registers ..12

3.9.1 User Register...13

3.9.2 Advanced User Register..14

4. Measurement ..15

4.1 General...15

4.2 Processing Time for Digital Output...16

4.3 Sensor Start-Up and Heater Warm-Up Delay ..16

4.4 Perform Measurement (Hold-Master Enabled) ..17

4.5 Perform Measurement (Hold-Master Disabled) ..17

4.5.1 Examples for the Communication (Hold-Master Disabled)..19

4.6 Read Temperature and Supply Voltage ...20

5. Transfer Sequences ...21

5.1 Soft Reset (0xFE) ...21

5.2 Write Register (0xE2, 0xE4) ...21

5.3 Read Register (0xE3, 0xE5)...21

5.4 Write EEPROM (0xFA)...22

5.4.1 General Conditions for Write EEPROM Operations ..22

5.5 Read EEPROM (0xFA) ..23

6. Communication Sequences ..24

6.1 Read Scale Factor and Measurement Unit ..24

6.1.1 Read Out Scale Factor and Measurement Unit from EEPROM ..24

6.1.2 Scale Factor ..24

6.1.3 Measurement Unit Coding ...25

6.2 Read Product Details ...25

6.3 Change Resolution ...25

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 3/34

6.3.1 Change Active Resolution ...26

6.3.2 Change Default Resolution..26

6.4 Change Calibration Field ..27

6.4.1 Change Active Calibration Field ..27

6.4.2 Change Default Calibration Field...27

6.5 Enable/Disable Hold Master ...28

6.5.1 Change Active Hold Master Setting...28

6.5.2 Change Default Hold Master Setting ...29

6.6 Heater Control ..29

6.6.1 Heater Mode On ..30

6.6.2 Heater Mode Off ..30

6.7 Change I2C Address ...30

6.7.1 Reserved I2C device addresses ..31

6.7.2 Example Communication Sequence to Change the I2C Address ..31

6.8 Access Free EEPROM Space..32

7. Error Handling ...33

7.1 Sensor to Master Data Corruption (Checksum Error) ..33

7.2 Master to Sensor Data Corruption..33

7.3 Sensor Timeout ..33

7.4 SDA High after Stop Condition ...33

Headquarter and Subsidiaries ...34

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 4/34

1. How to use this Guide

After years of supporting many development projects based our liquid flow sensors we want to share the following
recommendations and suggest to follow them at least partially:

General Suggestions:

 Make use of the Arduino examples available online (https://github.com/Sensirion/arduino-liquid-flow-snippets)
 Ideally, get an Arduino UNO with a bread board to be able to use the code examples. This gives you a reference to

see what should happen when you perform a step. The Arduino/Genuino Starter Kit (is a great starting point.
 First, implement only the flow measurement as described in section 4.4. Do not proceed to more complex

communication sequences before you get changing readings close to 0x0 or 0xFFFF1 at zero flow or with an empty
flow channel. Do not proceed if you get a constant reading of 0xFFFF for each measurement.

 Next you need to implement reading the EEPROM to read the scale factor and the measurement unit, see sections 0
and 6.1.

 Now you can proceed to implement other functionalities as needed.
 Be extremely careful about writing to the EEPROM as it can destroy the sensor. In almost all cases writing to the

EEPROM must not be part of your product’s/system’s code. It should be placed in a separate tool that is only used
during setup and installation; for example, to change the address or save your own data in the free EEPROM space.

 Do not work on any routines that write to the EEPROM after 5 pm or under the influence of jetlag 

2. Hardware Setup
Communication between a master and the sensor uses the digital I2C-interface. The physical interface consists of two bus lines,
namely a data line (SDA) and a clock line (SCL). For the detailed specifications of the I2C protocol refer to the document
"I2C-bus specification and user manual” from NXP. (http://www.nxp.com/documents/user_manual/UM10204.pdf)

The standard bus clock frequency is 100kHz, with the maximum bus clock frequency being 400kHz.

2.1 Communication Hardware
Possible hardware setups are:

 Microcontroller(board) with integrated hardware I2C interface (like Arduino, …)
 Computer(board) with integrated hardware I2C interface (like Raspberry Pi, BeagleBone, …)
 PC with USB to I2C converter. (Note that the Sensirion USB-to-I2C Adapter Set has been designed for operation with

the USB Sensor Viewer Software. It does not include an easy-to-use interface or software development kit)

1 To understand this, see section 3.6 about the two’s complement

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 5/34

2.2 Circuit Elements
Bi-directional bus lines are implemented by the devices (master and slave) using open-drain stages and a pull-up resistor
connected to the positive supply voltage.

I2C External Circuit Elements

SDA

SCL

VDD

master slave (SF04)Rp Rp

Both bus lines, SDA and SCL, are bi-directional and therefore require an external pull-up resistor.

The optimal pull-up resistor value is dependent on the system setup (capacitance of the circuit/cable, bus clock frequency). In
most cases, 10 kΩ resistors are a reasonable choice. Connect the sensor’s GND and the VDD lines to the supply voltage
specified in your sensors datasheet.

The capacitive loads on the SDA and SCL lines have to be the same. It is important to avoid asymmetric capacitive
loads.

 Be sure to use the correct supply voltage (VDD) and communication levels for the given products.

 Some microcontrollers have internal Pull Up resistors and might work without external ones; this does not mean that
it is a stable design, especially with multiple sensors on one bus. Test your design.

2.3 Level Shifter
Some liquid flow sensors rely on 3.3V, others on 5V levels for the communication. Your hardware might need the communication
to run on 3.3V (like the Raspberry Pi) or 5V (like the Arduino). If this does not match the product you are using, you will need to
use level shifters between the sensor(s) and the microcontroller.

The following sensors have internal level shifters and can communicate at 3.3V and 5V:

LG16, LS32, SLI, SLS, SLG, SLQ-QT105

The following do not have internal level shifters:

LPG10, SLQ-QT500

Note: In some cases, a sensor with 3.3V levels might even work on a 5V bus. However, this is not recommended as it might
shorten the lifetime of the sensor.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 6/34

For more details on bidirectional level shifter for I2C -bus please refer to US 5,689,196 and Application Note AN10441 by NXP:
http://www.nxp.com/documents/application_note/AN10441.pdf.

2.4 Hard Reset
In all critical applications we recommend that you add a hard reset function that can be controlled by your system’s master. The
master must be able to interrupt the sensor’s supply voltage and pull the SDA and SCL lines low to allow a clean reset of the
sensor.

2.4.1 Hardware for Hard Reset

Details of the implementation depend on your system, the specific sensor and other requirements. However, below are three
suggestions for common cases:

Voltage Regulator with Enable Pin

In the case that the sensor supply voltage is lower than the system voltage (for example: 5V microcontroller with the LPG10 at
3.3V) a possible solution is using a voltage regulator, e.g. the TCR2EF33 by Toshiba Semiconductor, with an enable pin that is
controlled by the microcontroller.

P-Channel MOSFET

In a system with identical system and sensor voltage a regular P-Channel MOSFET, like the DMP2160UW, can be used (for
example, when using an LG16 in a 5V system).

Care must be taken with sensors that have additional internal voltage regulators; like the LG16, SLI and SLG sensor. This can
cause the system voltage to break down due to the high currents drawn at power-on. Adding a capacitor for stabilization can
resolve this issue. This is not a problem for sensors, like the LPG10 and SLQ-QT500, without internal voltage regulator.

Load Switch

If the micro controller runs on a lower voltage than the sensor, an integrated load switch like the AP22802AW5-7 or TCK107AF
can be used.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 7/34

2.4.2 Reset Procedure

For a successful hard reset it is necessary that the SCL and SDA lines must be pulled low.

This is usually not a problem when working with open-collector pins (typical for I2C); in this case it is sufficient to hook the pull-
up resistors up to the sensor’s VDD after the voltage regulator or MOSFET (see figure above).

In the case that the pull-up resistors remain connected to a high line during reset it is necessary that the master actively pulls
down SCL and SDA because the sensor chip might remain powered through the diodes D6 and D8, on a level unsuitable for a
clean reset. This is due to the sensor chip’s internal ESD protection structure (see figure below):

The pins should remain low during power-off and for 31 ms after power-on to ensure a properly completed reset procedure.

Depending on your implementation of the I2C interface you might have to use different methods to ensure that the lines are low
during hard reset:

 If you have direct control, simply set the output pins low

 If you can trigger individual start and stop conditions, you can use the start condition to pull both lines low and the stop
condition to pull them up again

 If you have no control over low level functions, you might have to disable I2C to gain control of the output pins.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 8/34

3. I2C Protocol
The I2C interface is a serial, half-duplex computer bus used for intra-board and short distance communication between
microcotrollers and processors and peripheral ICs.

Many modern microcontrollers offer a hardware I2C interface. This means that it is not necessary to handle the low level I2C
communication details in your code but you use the high level functions of the I2C module and let it do its work; possibly
simultaneously while your micro controller performs other tasks. Below we provide the communication protocol for completeness.
When using high level library functions for the communication, a detailed understanding of the base protocol is not necessary.
However, it can still be helpful for trouble shooting communication issues.

3.1 Communication Protocol
On the I2C bus all transactions begin with a START (S) and are terminated by a STOP (P) condition.

Transmission START Condition (S)

The START condition is a unique situation on the bus created by the master, indicating to the slaves the beginning of a
transmission sequence (bus is considered busy after a START).

Transmission STOP Condition (P)

The STOP condition is a unique situation on the bus created by the master, indicating to the slaves the end of a transmission
sequence (bus is considered free after a STOP).

I2C Transmission Start Condition I2C Transmission Stop Condition

S

START condition

SDA

SCL

P

STOP condition

SDA

SCL

A HIGH to LOW transition on the SDA line while SCL is
HIGH

A LOW to HIGH transition on the SDA line while SCL is
HIGH.

Acknowledge / Not Acknowledge

Each byte (8-bit) transmitted over the I2C bus is followed by an acknowledge pulse (ACK) from the receiver, e.g. for transmission
from master to slave the pulse is generated by the slave.

Transmission master to slave: in this case the slave generates an acknowledge pulse if it receives a valid command or data.

Transmission slave to master: the master generates an acknowledge pulse. If the acknowledge pulse is missing, the slave
aborts the transmission of any following bytes and goes into idle mode.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 0 – August 2017 – Restricted D2 9/30

I2C Acknowledge / Not Acknowledge

ACKSCL R/_W D7 D0 ACK

SDA

not acknowledge

acknowledge

Each byte is followed by an acknowledge or a not acknowledge pulse, generated by the receiver. (The bold lines
indicate that the sensor controls the SDA/SCL line.)

3.2 Handshake Procedure (Hold Master, clock stretching)
In a master-slave system it is normally the master dictating when the slaves shall receive or transmit data. However, in some
situations a slave device may need time to store received data or prepare data to be transmitted. Therefore, a handshake
procedure is required allowing the slave to indicate termination of internal processing. While normally the master controls the
clock line, in this case the slave exceptionally holds the clock line low and the bus is blocked until the slave releases the clock
line.

I2C Hold Master

ACKSCK R/_W D7 D0 ACK

DATA

Hold master:
SCK line pulled LOW data ready: SCK line released

After the acknowledge-related SCL pulse, the sensor (slave) can pull down the SCL line to force the master into a
wait state. By releasing the SCL line the sensor indicates that internal processing is terminated and that
transmission can continue. (The bold lines indicate that the sensor controls the SDA/SCL line.)

3.3 Data Transfer Format
In the I2C protocol, data is transferred in byte packages, i.e., in frames of 8-bit length. Each byte is followed by an acknowledge
bit. Data is transferred with the most significant bit (MSB) first.

The data transfer format is shown in the following figures. A data transfer sequence is initiated by the master producing the
START condition (S) and sending a header byte. The I2C header is made up of the 7-bit I2C device address and a data direction
bit (R/_W).

The value of the R/_W bit in the header determines the data direction for the entire rest of the data transfer sequence: if R/_W
= 0 (WRITE) the direction remains master-to-slave, if R/_W = 1 (READ) the direction changes to slave-to-master after the header
byte.

SCL line pulled LOW by the slave SCL line released by the slave

SCL

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 10/34

I2C Read And Write

S Cmd PI2CAdr

I2C header

I2C WRITE:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Command

19 20 21 22 23 24 25 26 27

S I2CAdr

I2C READ:

1 2 3 4 5 6 7 8 9

A
C

K

A
C

K
A

C
K

I2C header

AC
K

P

Data A
C

K

A
C

K

Data A
C

K

10 11 12 13 14 15 16 17 18

Data AC
K

AC
K

DataR

W

data direction: slave-to-masterdata direction: master-to-slave

3.4 I2C Address
The I2C address consists of a 7-digit binary value. By default, the I2C address of Sensirion liquid flow sensors is set to decimal
64 (binary: 1000 000). The address is always followed by a write bit (0) or read bit (1). The default hexadecimal I2C header for
read access to the sensor is therefore 0x81, for write access it is 0x80.

3.5 Data Types and Representation
The data in the frames is transmitted in big-endian order, i.e. Most-Significant Byte (MSB) first. Integers can be transmitted as
signed or unsigned integers. The following types of integers are used:

Integer Type Size Range Examples
unsigned, 16-bit (u16t) 2 Byte 0 … 216-1 VDD measurement
unsigned, 32-bit (u32t) 4 Byte 0 … 232-1 Serial number
signed, 16-bit (i16t) 2 Byte -215 … 215-1 Flow measurement

3.6 Two’s Complement

Signed integers are represented according to the two’s complement convention. This means that the N-bit binary representation
of a negative number –x is the two's complement of that number's absolute value |-x|.

The following recipes may be used to obtain the binary representations of negative numbers and to reconstruct the numerical
value from the binary representations, respectively.

Note that the two’s complement is widely used in computing and used for signed number representation in almost all
microprocessors. Consult your microprocessor’s or programming language’s manual if you can use the native integer format
directly.

Find the N-bit signed integer representation m corresponding to a number x
 if x<0: # if the number is negative
 m = (|x| ^ (2**N – 1)) + 1 # compute the two's complement of its absolute value
 else: # else the number is positive
 m = x # no computation needed

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 11/34

Here the operator '| |' denotes the absolute value, '^' denotes the bit-wise XOR (exclusive OR), '**' denotes the power as
in 2**3 = 8.

Examples:

 -7 as 8-bit signed integer:
 (|-7| ^ (2**8-1)) + 1 = (7 ^ (256-1)) + 1 = (7 ^ 255) +1 = 248 + 1 = 249 = 0xF9

 -7 as 16-bit signed integer:
 (|-7| ^ (2**16-1)) + 1 = (7 ^ 65535) + 1 = 65528 + 1 = 65529 = 0xFFF9

Find the number x represented by the N-bit signed integer m

 if m & 2**(N-1) == 2**(N-1): # if the most-significant bit of m is '1', the number is negative.
 x = -((m ^ (2**N – 1)) + 1) # compute the two's complement
 else: # else the number is positive
 x = m # no computation needed

Here the operator '&' denotes the bit-wise AND, '^' denotes the bit-wise XOR (exclusive OR), '**' denotes the power as in
2**3 = 8.

Examples:

 Find the number represented by the 8-bit signed integer 0xF7:
 m= 0xF7 = 247
 247 & 2**7 == 2**7 : True
 therefore: x= -((247 ^ (2**8-1)) + 1) = -((247 ^ 255) + 1) = -(8 + 1) = -9

 Find the number represented by the 16-bit signed integer represented by the bytes [0xF7, 0x34]:
 m = 0xF7 * 2**8 + 0x34 = 247 * 256 + 52 = 63232 + 52 = 63284
 63284 & 2**15 == 2**15 : True
 therefore: x= -((63284 ^ 65535) + 1) = -(2251 + 1) = -2252

3.7 Checksum

All Sensirion liquid flow sensors implement a slave to master checksum. We highly recommend implementing the checksum in
your code and checking each answer from the sensor for the correct checksum. For this you simply calculate the checksum
over the two data bytes and compare it with the following CRC byte.
Should there regularly be checksum errors in your communication it is advisable to raise an error and check your design for
robustness.

Liquid flow sensors implement the CRC-8 standard based on the generator polynomial

x8 + x5 + x4 +1.

Specifically, the sensor implements the CRC-8 standard with following parameters2:

Name Width Polynom Init RefIn RefOut XorOut Check3

CRC-8 8 0x131
(x8+x5+x4+1)

0x00 false false 0x00 0xA2

2 More information may eventually still be found on this webpage:

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html
3 CRC for an ASCII input string "123456789" (i.e. 0x31, 0x32, 0x33, 0x34, ..., 0x39)

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 12/34

There are various possible implementations to calculate the checksum. For details see the separate application note available
from Sensirion.
Here is one possible implementation in C that runs on Arduino and calculates the checksum for a two-byte data array:

3.8 Sensor commands
The following commands are available for I2C communication. The usage is explained in the following sections.

Command Value Description
USER_REG_W 0xE2 Write user register
USER_REG_R 0xE3 Read user register
ADV_USER_REG_W 0xE4 Write advanced user register
ADV_USER_REG_R 0xE5 Read advanced user register
TRIGGER_FLOW_MEASUREMENT 0xF1 Trigger a flow measurement
TRIGGER_TEMP_MEASUREMENT 0xF3 Trigger a temperature measurement
TRIGGER_VDD_MEASUREMENT 0xF5 Trigger a supply voltage measurement
EEPROM_W 0xFA Write to EEPROM
EEPROM_R 0xFA Read EEPROM
SOFT_RESET 0xFE Soft reset

3.9 Control/Status Registers
All functions and options of the sensor are controlled by the contents of the control registers. The registers are initialized from
the EEPROM at boot time and can be read and written to determine and configure the sensor’s settings.

The available registers are:

Name Width [bit] Description

User Register 16 Basic user settings

Advanced User Register 16 Advanced user settings

Register settings can be changed in the registers themselves for immediate effect on the sensor’s behaviour. The settings in
the registers are volatile and will be initialized again at boot time.

The default boot content of the registers can be changed in the EEPROM. After changing the EEPROM entry, the sensor will
read the new default contents from the EEPROM at every soft reset or hard reset.

In the final product/system the registers are typically only directly manipulated to alter the sensor’s behavior during runtime,
while the default boot content in the EEPROM is only changed once at production/installation.

For example, in a system that can handle multiple liquids, the user register is changed directly to set the active calibration field
if the working liquid is changed during runtime. In contrast, the default boot content of the user register should be changed at
installation if the system always uses the same active calibration.

See sections 5.2 and 5.3 for instructions on how to read and write the registers. See sections 5.4 and 0 for instructions on how
to read and write the registers’ default boot content in the EEPROM.

#define POLYNOMIAL 0x131
byte data[2]; byte byteCtr; byte calc_crc = 0;

for (byteCtr = 0; byteCtr < 2; ++byteCtr){
 calc_crc ^= (data[byteCtr]);
 for (i = 8; i > 0; --i){
 if (calc_crc & 0x80) { calc_crc = (calc_crc << 1) ^ POLYNOMIAL;}
 else { calc_crc = (calc_crc << 1); }
 }
}

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 13/34

The default boot contents are stored at the following EEPROM addresses:

Wordadr #Words (16 bit) Description/Format

0x2C0 1 default boot content user register

0x2C1 1 default boot content advanced user register

To change a setting in a register, the following steps have to be performed:

1. Read the register to a variable in your program to determine the current state.
2. Change ONLY the bits of the variable that relate to the desired change.
3. Write the whole new 16-bit value to the register.
4. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.

To change the default boot content of a register, the following steps have to be performed:

1. Read EEPROM entry at the relevant EEPROM addresses to a variable in your program.
2. Change ONLY the bits of the variable that relate to the desired change.
3. Write the whole new 16-bit value to the EEPROM.
4. Reread the EEPROM entry to verify that the new settings have been applied correctly and no communication error has

occurred.

Whenever writing to a register or to the EEPROM you must always write the full word (16 bit).

 The calibration of the sensor is done for specific sensor settings. Changing the user and advanced user
register may change the calibration and lead to non-interpretable sensor measurements. Overwriting the

default boot content changes, the sensor settings irreversibly and may render the sensor unoperational. Sensirion
disclaims any warranty for sensors with changed default boot content. Do not write to any other field of the EEPROM.
This may destroy the configuration and calibration of the system.

The following tables contain a detailed description of the register contents.

3.9.1 User Register

When changing the register entry, read out the entire register (full 16-bit word) and do not change those settings labelled as
“advanced settings” in the table below.

Bit #Bits Description/Coding

15:7 9 advanced settings (do not change)

6:4 3 selector active calibration field (i.e., active LUT (look-up-table))
 000: calibration field 0 (default)
 001: calibration field 1
 010: calibration field 2
 011: calibration field 3
 100-111: calibration field 4

 Utilization and content of calibration fields are dependent on the specific device. See your sensor’s
datasheet or contact Sensirion for further information.

3:0 4 advanced settings (do not change)

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 14/34

3.9.2 Advanced User Register

When changing the register entry, read out the entire register (full 16-bit word) and do not change those settings labelled as
“advanced settings” in the table below.

Bit #Bits Description/Coding

15:13 3 advanced settings (do not change)

12 1 no heater shut-down at measure end
 0: shut-down heater
 1: keep heater power as-is

11:9 3 resolution of measurement
 000: 9 bit (flow); 6 bit (temperature/supply voltage)
 001: 10 bit (flow); 7 bit (temperature/supply voltage)
 010: 11 bit (flow); 8 bit (temperature/supply voltage)
 011: 12 bit (flow); 9 bit (temperature/supply voltage)
 100: 13 bit (flow); 10 bit (temperature/supply voltage)
 101: 14 bit (flow); 11 bit (temperature/supply voltage)
 110: 15 bit (flow); 12 bit (temperature/supply voltage)
 111: 16 bit (flow); 13 bit (temperature/supply voltage)

 Default settings dependent on product.

8:2 9 advanced settings (do not change)

1 1 hold-master

 0: disabled
 1: enabled (default)

0 1 advanced settings (do not change)

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 15/34

4. Measurement

4.1 General

Flow measurements are always performed by triggering the measurement first and retrieving the measurement result once the
measurement is finished.

A single flow measurement’s duration depends on the resolution setting and can last between approximately 1 and 70 ms (see
0). Depending on this setting, the sensor will average multiple measurements internally for a higher resolution measurement.

It is important to understand that the measurement starts right after it is triggered by the I2C read header and lasts only as long
as the processing time (depending on the resolution setting). The next measurement only starts after it is triggered again.
Therefore, irregular measurements will result in “blind spots” of the measurement. Since the communication only takes a few
microseconds a nearly complete coverage is possible if the next measurement is triggered immediately.

In many cases, small delays between the measurements are acceptable. This can be needed if a fixed spacing between the
measurements is desired. If, for example, 14 bit measurements with a typical duration of 17.5 ms are triggered every 20 ms the
“blind spots” only make up 12.5 % of the measurement time; which will be acceptable in most cases.

In some applications only a low data rate of flow measurements is needed. It is important to understand that this is not the same
as performing irregular flow measurements. Insufficient sampling rates of the flow profile can lead to incorrect measurement
results due to aliasing effects, especially for pulsating flows (Nyquist theorem). If only low sampling rates are needed in the
application the flow should still be sampled regularly but can be averaged over multiple measurements on the master.

Example: Insufficient sampling rate leads to incorrect results in case of pulsating flow. In the example on the left, one 14 bit
measurement is started every 100 ms. The duration of the measurement is slightly less than 20 ms (grey area) and provides
one measurement result for the average flow rate (red line) during this period (red star). Assuming that this measurement is
valid for the remaining 80 ms results in a drastic underestimation of the flow rate (blue flow graph versus red line). In the example
on the right, multiple measurements sufficiently cover the flow profile and can be averaged if desired.

In some system setups you might not have a dedicated microprocessor to handle the sensor measurement exclusively or want
to measure/communicate with multiple sensors/devices on the same bus. In this case it might be a good approach to use the
sensor without hold master (see 4.5 and 6.5.)

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 16/34

4.2 Processing Time for Digital Output
The following table summarizes the required processing time for all available resolutions. The times given do not include
communication.

Resolution
[bit]

Processing Time [ms]

Min. Typ. Max.

9 0.5 0.8 0.9

10 1.0 1.3 1.5

11 2.0 2.4 2.6

12 4.1 4.6 4.9

13 8.2 8.9 9.4

14 16.4 17.5 18.5

15 32.8 34.8 36.7

16 65.5 69.3 73.2

4.3 Sensor Start-Up and Heater Warm-Up Delay

When powering up the sensor, the SCL line should be HIGH (released) for the sensor to start-up. The maximum time for system
power up is 2.7 ms until the sensor responds to communication requests. If the SCL line is pulled LOW the start-up can require
a maximum of up to 31 ms.

The maximum time for a soft reset is 2.6 ms if the SCL line is HIGH and up to 31 ms if it is pulled LOW.

After reset or start-up of the sensor, the sensor’s internal heater is turned off and must be started by performing a single (dummy4)
measurement of the flow at any resolution setting. The very first measurement is delayed by approximately 32 ms for all liquid
flow sensors, with the exception of the SLQ-QTxxx series, which performs the first measurement without any delay.

Due to the thermal measurement principle a total warm-up time of typically 120 ms is necessary for a reliable measurement.
This includes the 32 ms needed for the heater warm-up delay and the time needed for the very first (dummy) measurement (e.g.
74 ms at 16 bit resolution).

4 The term dummy measurement refers to the fact that the result of the measurement should be disposed of and does not serve as a
regular measurement. The communication sequence does, however, not differ from any regular flow measurement as described in section
4.4.

Time 0 ms 31 ms 63 ms 137 ms 151 ms

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 17/34

4.4 Perform Measurement (Hold-Master Enabled)
To perform a measurement, first write the command byte 0xF1 (trigger measurement) to the sensor. In a second step
perform a read operation to trigger the measurement and retrieve the flow measurement.

Upon reception of the I²C header with R/_W=1 (read data command), the sensor produces a hold-master condition on the bus
(clock line is kept low) until the measurement is completed (duration depending on the configuration 1 to 80 ms, up to 112 ms
(including heater warm-up delay for the very first measurement).

Make sure the I²C master is ready to wait and no communication with other devices on the same I2C bus is needed during this
period because the master-hold condition blocks the entire I2C bus.

Once the hold-master condition is suspended, the master can read the result as two consecutive bytes which represent the
current flow rate.

A CRC byte follows if the master continues clocking the SCK line after the second result byte. The sensor system checks whether
the master sends an acknowledge after each byte and aborts the transmission if not.

Note that two transfer sequences are needed. The first sequence stores the command, while the second sequence invokes the
previously stored command in READ mode.

Although, a subsequent I2C header with R/_W=1 will, by itself, start a new measurement after reading the data, for stability, we
recommend to always resend the measurement command 0xF1 followed by the I2C header with R/_W=1 (read header) to start
the next measurement.

I2C Measurement (hold-master enabled)

1312 18 19 2221 27

MSByte MeasData LSByte MeasData

11 14 15 16 17 20 23 24 25 26

AC
K

AC
K

28 3130 36

Check Byte

29 32 33 34 35

1 2 3 4 5 6 7 8

A
C

K

9 18

S I2CAdr

A
C

K

S RI2CAdr
A

C
K

W

1 2 3 4 5 6 7 8 9

10

Hold Master

PAC
K

Cmd

10 11 12 13 14 15 16 17

4.5 Perform Measurement (Hold-Master Disabled)

See sections 6.5 for instructions on how to disable the hold-master condition for the sensor.

When hold-master is disabled, send the flow measurement command 0xF1 followed by an I2C header with R/_W=1 (read header).
The sensor starts measuring when it receives the read header. This is similar to the case that hold-master is enabled, but no
hold-master condition is produced, the clock-line is released and the I2C bus is free. Send a second I2C read header to retrieve
the measurement result from the sensor.

Until the sensor system has completed its measurement, an I2C header with R/_W=1 (read header) won't be acknowledged.
Once the sensor has finished measuring, it will acknowledge an I2C read header and the master can read the result from the
two consecutive bytes after the ACK. A CRC byte follows if the master continues clocking the SCL line after the second result
byte (it is highly recommended to check to CRC byte).

Although, a subsequent I2C header with R/_W=1 will, by itself, start a new measurement after reading the data, for stability, we
recommend to always resend the measurement command 0xF1 followed by the I2C header with R/_W=1 (read header) to start
the next measurement.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 18/34

I2C, Measurement (hold-master disabled)

measuring

measuring / no valid data / no communication possible

measuring

S I2CAdr

I2C header

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Measurement cmd.

W I2CAdr R

I2C header (start)

S

2 3 4 5 6 7 81 9

idle / communicating

I2CAdr RS

2 3 4 5 6 7 8 91

I2C header (polling)

I2CAdr RS

2 3 4 5 6 7 8 91

I2C header (polling)

valid data / communicating

I2CAdr R

I2C header (read data)

S

2 3 4 5 6 7 8 91

2-3 Data Bytes AC
K

read data (and CRC)

internal state:

11 0 X X111

A
C

K

N
A

C
K

A
C

K

A
C

K
N

A
C

K

A
C

K

The following table shows the combinations of acknowledge or not acknowledged (NACK) pulse and the data the sensor system
produces upon reception of an I2C read header. For all cases, the master sends an I2C header with R/_W=1 and reads three
bytes, each of them followed by an acknowledge pulse generated by the master.

Hold-master disabled: possible responses to I2C read header

Meaning of I2C header ACK/NACK (Bit 9) Data MSB Data LSB CRC CRC valid?

start measurement ACK 255 255 255 no

polling NACK 255 255 255 no

read data ACK MSB LSB CRC yes

An I2C header with R/_W=0 will always be acknowledged, regardless of the sensor system’s internal state. However, no
command (with the exception of 0xF6 5) will be acknowledged during the measurement and until the result of the last
measurement has been read. After the measurement has been retrieved a new command can be sent to the sensor.

5 The command 0xF6 is a specific command of the sensor chips command set. It is not applicable to liquid flow sensors. Do not send the command 0xF6*
to any liquid flow sensor. Two read headers are necessary after this command to recover.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 19/34

Hold-master disabled: possible responses to I2C write header

I2CAdr W

I2C header (read data)

S

2 3 4 5 6 7 8 91

command

10 11 12 13 14 15 16 17 18

I2C Command

State Command 1st ACK (Bit 9) 2nd ACK (Bit 18)

Measuring / Measurement not read All commands ACK NACK

Measurement read / idle All valid commands ACK ACK

4.5.1 Examples for the Communication (Hold-Master Disabled)

Example 1 (Hold-Master Disabled): correct usage
Action
(w.r.t. I2C master)

ACK? Sensor response
(hex)

Comment

send data: 0xF1 ACK set up flow measurement

read 3 bytes ACK FF FF FF flow measurement started

 wait

read 3 bytes ACK flow. meas. flow value with correct CRC

chip is idle and ready for communication

Example 2 (Hold-Master Disabled): writing instead of reading flow value
Action
(w.r.t. I2C master)

ACK? Sensor response
(hex)

Comment

send data: 0xF1 ACK set up flow measurement

read 3 bytes ACK FF FF FF flow measurement started

send data: 0xE3 NACK communication fails, chip expects a read header

send data: 0xE3 NACK communication fails, chip expects a read header

 wait

read 3 bytes ACK flow. meas. flow value with correct CRC

send data: 0xE3 ACK command accepted

read 3 bytes ACK 0E 00 6D user register with correct CRC

Example 3 (Hold-Master Disabled): polling
Action
(w.r.t. I2C master)

ACK? Sensor response
(hex)

Comment

send data: 0xF1 ACK set up flow measurement

read 3 bytes ACK FF FF FF flow measurement started

read 3 bytes ACK FF FF FF measurement not yet finished (polling)

read 3 bytes ACK flow. meas. flow value with correct CRC

read 3 bytes ACK FF FF FF flow measurement started

read 3 bytes ACK flow. meas. flow value with correct CRC

read 3 bytes ACK FF FF FF flow measurement started

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 20/34

send data: 0xE3 NACK communication fails, chip expects a read header

read 3 bytes ACK flow. meas. flow value with correct CRC

send data: 0xE3 ACK command accepted

read 3 bytes ACK 0E 00 6D user register with correct CRC

4.6 Read Temperature and Supply Voltage

It is possible to read out the temperature and the supply voltage of the sensor chip. The communication sequence is identical
to the flow measurement, described in sections 4.4 and 0. Instead of the command 0xF1 for a flow measurement the following
commands must be send:

8-Bit Command Code Command

0xF3 trigger temperature measurement

0xF5 trigger VDD measurement

Parameter Scale factor Explanation

Temperature 10°C-1 Divide the signed output value by 10 to get the physical value in
degree C.

Supply voltage 1mV (1000 V-1) The output directly represents mV.

Attention: Temperature and VDD might not be calibrated for your product. Please consult the datasheet for specification.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 21/34

5. Transfer Sequences

5.1 Soft Reset (0xFE)
Force a reboot of the sensor system without switching the power off and on again. Upon reception of this command the sensor
system reinitializes the control/status register contents from the EEPROM and starts operation according to the settings.

See sections 4.3 for timing details. The soft reset is only available when the sensor is idle.

I2C, Soft Reset

1 2 3 4 5 6 7 8

S

9

1 1 1 1 0I2CAdr W

10 131211 14 15 16 17 18

system reboot1 1 1

A
C

K

A
C

K

5.2 Write Register (0xE2, 0xE4)
Overwrite the register addressed by the command. After receiving the write header with R/_W=0, followed by the respective
command, the sensor system reads the new register value from the bus. The first byte is stored as the most significant byte, the
second byte is stored as the least significant byte of the register. The sensor system acknowledges successful reception of each
byte (ACK)

I2C, Write Register

A
C

K

A
C

K

A
C

K

A
C

K

1 2 3 4 5 6 7 8 9 10 1312 18 19 2221 27

MSByte RegData LSByte RegData

11 14 15 16 17 20 23 24 25 26

S I2CAdr

28 3130 3629 32 33 34 35

W P00 0 X X111

Because the sensor does not implement a master to slave checksum we strongly recommend to read back the register
after every write operation to confirm that the correct values have been received by the sensor.

5.3 Read Register (0xE3, 0xE5)
Read the content of the register addressed by the command. After receiving the read the header with R/_W=1, the sensor
system writes the register value to the bus. The first byte written is the most significant byte, the second byte the least significant
byte of the register. A CRC byte follows, if the master continues clocking the SCL line after the second byte. The sensor system
checks whether the master sends an acknowledge after each byte and aborts the transmission if not. Note that two transfer
sequences are needed. The first sequence stores the command, while the second sequence invokes the previously stored
command in READ mode.

I2C Read Register

10 1312 18 19 2221 27

MSByte RegData LSByte RegData

11 14 15 16 17 20 23 24 25 26

AC
K

AC
K

28 3130 36

Check Byte

29 32 33 34 35

1 2 3 4 5 6 7 8

A
C

K

9 18

S I2CAdr

A
C

K

S RI2CAdr

A
C

K

W

1 2 3 4 5 6 7 8 9

PAC
K

Cmd

10 11 12 13 14 15 16 17

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 22/34

5.4 Write EEPROM (0xFA)
Overwrite the EEPROM memory cell (16-bit word) at the address provided. The first two bytes after the write header are
interpreted as EEPROM address, beginning with the most significant bit (the four least significant bits of the second byte are
ignored, since the address width is 12-bit only). After the address bytes, the new word value is read from the bus, most significant
byte first. The sensor system acknowledges successful reception of each byte (ACK). Upon successful reception of the least
significant byte the internal write cycle is triggered. The sensor system will not respond to further bus calls until the write cycle
is completed.

I2C, Write EEPROM

1 2 3 4 5 6 7 8 9 10 1312 19 2221 2711 14 15 16 17 20 23 24 25 2618

MSByte EEData

4847 5346 49 50 51 52 54

LSByte EEData

EEAdr XX X XEEAdr

internal write cycle

S I2CAdr W

28 3130 3629 32 33 34 35

3938 4437 40 41 42 43 45

1 1 0 1 0111

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

Because the sensor does not implement a master to slave checksum we strongly recommend to read back the written
EEPROM cells in order to verify correct write operation.

Care must be taken when constructing the two address bytes. Since the address is only 12 bit long it must be padded
with 4 unused bits on the right. Example: When setting the address to 0x123, you must send 0x1230

EEPROM cells can be overwritten thousands of times, but it is advised to limit the writing to the EEPROM to the minimum.

5.4.1 General Conditions for Write EEPROM Operations

Additionally to the conditions given in datasheet, the following conditions have to be respected when writing to the EEPROM:

Property Min. Typ. Max. Unit

Bus Clock Frequency 0 100 400 kHz

EEPROM Internal Write Cycle 6 10 ms

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 23/34

5.5 Read EEPROM (0xFA)

Dump the content of the EEPROM starting at the address stored in the internal address register. The internal address register
must be set by invoking a dummy write sequence, i.e., initiating a write EEPROM sequence by sending the command 0xFA and
the two address bytes.

After the read header with R/_W=1, the sensor system writes the EEPROM word at the current address to the bus, followed by
a CRC byte. The internal address register is automatically increased after each completed word write out. Therefore, if the
master keeps on clocking the SCL line after the CRC byte, the next EEPROM word with corresponding CRC byte is written to
the bus, and so on. When the address pointer reaches the end of the address space it restarts at zero. The master can interrupt
EEPROM dumping by not pulling down the SDA line during any acknowledge-related SCL pulse (NACK).

I2C Read EEPROM

AC
K

Check ByteMSByte EEData AC
K

LSByte EEData AC
K

Check ByteMSByte EEData AC
K

LSByte EEData AC
K

1 2 3 4 5 6 7 8 9 19 2221 2720 23 24 25 26

A
C

K

18

A
C

K

A
C

K

EEAdr XX X XEEAdrS I2CAdr

A
C

K

W

28 3130 3629 32 33 34 35

S RI2CAdr
A

C
K

1 2 3 4 5 6 7 8 9

P

10 1312 19 2221 2711 14 15 16 17 20 23 24 25 2618 28 3130 3629 32 33 34 35

N
AC

K

Cmd

10 11 12 13 14 15 16 17

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 24/34

6. Communication Sequences

6.1 Read Scale Factor and Measurement Unit
For some standard products, the default scale factor and flow unit can be found in the datasheet. Nevertheless, we strongly
recommend to readout the scale factor and flow unit from the sensor itself.

The original calibrated signal read from the sensor is an integer number which is signed (see 3.6) for bi-directional calibration
fields and unsigned for uni-directional calibration fields. To convert the integer value to the original unit the sensor has been
calibrated for, divide it by the scale factor of the sensor’s active calibration field.

The EEPROM addresses for the scale factors and the measurement units of each active calibration field are given below.

Calibration Field Address of scale factor Address of measurement unit

0 0x2B6 0x2B7

1 0x5B6 0x5B7

2 0x8B6 0x8B7

3 0xBB6 0xBB7

4 0xEB6 0xEB7

6.1.1 Read Out Scale Factor and Measurement Unit from EEPROM

To read out the scale factor for a given calibration field the following steps have to be performed:
1. Set the EEPROM’s internal address pointer to the respective address by sending an I2C write-header followed by the

EEPROM access command (0xFA) and the address from which to read. Full command string: 0x 80 FA XX X0.
(hexadecimal, XX X is the respective EEPROM address, assuming the default I2C address, see section 0).
Important Note: the EEPROM address is 12 bit long and needs to be padded with zeros on the right. I.e. the address
0x123 needs to be transmitted as 0x12 0x30.

2. Read the EEPROM entry (1 word) and the CRC byte.
The scale factor is a 16-bit unsigned integer value. For the measurement unit, determine the corresponding unit according to
the coding provided in section 0 below.

It is also possible to read the scale factor and the measurement unit in two consecutive reads cycles as the word address for
each calibration field’s measurement unit always follows right after the scale factor and the sensor chip automatically increases
the internal address pointer after it has written the EEPROM word to the I2C bus.

6.1.2 Scale Factor

To calculate the flow rate in physical units as a float point value from the integer value read from the sensor, divide the integer
value by the determined scale factor. Note that you have to read the corresponding scale factors for all the calibration fields you
are using and always apply the respective scale factor depending on the active calibration field.

The scale factor’s sole purpose is to allow an efficient transfer of the flow measurement value as a 16-bit integer. The scale
factor is not a calibration in itself and it is not possible to change the calibration by simply using a different scale factor.

Scale factor and measurement unit are defined for each calibration field during calibration and cannot be changed later on.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 25/34

6.1.3 Measurement Unit Coding

The number which has been read out of the EEPROM for the flow unit can be de-coded according to below system. Only
relevant units, dimensions and time bases are listed.

Unit nl/min µl/min ml/min µl/sec ml/h
Code 2115 (0x0843) 2116 (0x0844) 2117 (0x0845) 2100 (0x0834) 2133 (0x0855)

Scale factor and measurement unit are defined for each calibration field during calibration and cannot be changed later on.

6.2 Read Product Details

All Sensirion liquid flow sensors provide a part name and serial number for traceability.

The serial number and part name of the sensor can be read out from the EEPROM at the following addresses:

Word address #Words

(16 bit)
Description Format

0x2E8-0x2F1 10 sensor/part name ASCII formated character array
0x2F8-0x2F9 2 serial number product 32 bit unsigned integer

To read the part name and the serial number the following steps have to be performed:

1. Set the EEPROM’s internal address pointer to the respective address by sending an I2C write-header followed by the
EEPROM access command (0xFA) and the address from which to read. Full command string: 0x 80 FA 2E 80.
(hexadecimal, assuming the default I2C address, see 0)

2. Read the EEPROM entry (1 word) and the CRC byte by sending an I2C header with R/_W=1.
3. Repeat step 2 eleven times in total by continuing to clock the SCL line. The internal address pointer is automatically

moved to the next word after each completed word write out.

The ten 16-bit words starting at address 0x2E8 are a 20 byte, ASCII formatted character array. The two 16-bit words starting at
address 0x2F8 provide the serial number and are formatted as a 32-bit unsigned integer (most significant byte first).

6.3 Change Resolution

The total time per measurement is determined by the resolution setting, bits <11:9>, in the advanced user register. The active
resolution of measurement setting can be changed in the advanced user register to effect all following measurements until the
setting is changed again or the sensor is reset.

Alternatively, the setting can be changed in the default boot content of the advanced user register in the sensor’s EEPROM to
be in effect after the next system reboot.

Additionally, the default resolution at boot time can also be changed using the USB-RS485 Sensor Viewer with the SCC1-USB
sensor cable. The USB-RS485 Sensor Viewer is available in the download center on the Sensirion liquid flow webpage.

Typically, the resolution setting is only changed in the register during evaluation and if more than one resolutions (measurement
times) are needed during operation.

If the same resolution setting shall be used at any time during operation the default boot content of the advanced user can be
changed in the EEPROM once during installation.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 26/34

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Default Advanced User register for liquid flow sensors6 x15 x14 x13 x12 1 1 1 x8 x7 x6 x5 x4 x3 x2 x1 x0

Do not change! resolution of
measurement

Do not change!

Changed register for the desired resolution setting x15 x14 x13 x12 0/1 0/1 0/1 x8 x7 x6 x5 x4 x3 x2 x1 x0

6.3.1 Change Active Resolution

To change the sensor’s active resolution setting the flowing steps have to be performed. The detailed register read/write
sequences are explained in sections 5.2 and 5.3.

1. Read the advanced user register and the CRC byte with command 0xE5.
2. Save the register entry to a variable in your program.
3. Change ONLY bits <11:9> of this variable to the setting for the new resolution (see sections 3.9.2).
4. Write the entire new 16-bit value to the sensor’s register with command 0xE4.
5. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.
6. The new resolution setting is active immediately.

6.3.2 Change Default Resolution

To change the sensor’s default resolution at boot time the following steps have the be performed to modify the setting in the
default boot content of the advanced user register (see section 3.9.2). The detailed EEPROM read/write sequences are
explained in sections 5.4 and 0.

1. Set the EEPROM’s internal address pointer to address 0x2C1 by sending an I2C write-header followed by the EEPROM
access command (0xFA) and the address from which to read. Full command string: 0x 80 FA 2C 10. (hexadecimal,
assuming the default I2C address, see section 0).

2. Read the EEPROM entry (1 word) and the CRC byte by sending an I2C header with R/_W=1.
3. Save the EEPROM entry to a variable in your program.

4. Change ONLY bits <11:9> of this variable to the setting for the new resolution (see section 3.9.2).
5. Reset the EEPROM’s internal address register to address 0x2C1 by repeating step 1 (the internal pointer has been

incremented by reading the word).
6. Write the new value to the sensor’s EEPROM.
7. Wait for the internal write cycle of 10ms.
8. Reread the EEPROM entry by repeating steps 1 and 2 to verify that the new settings have been applied correctly and

no communication error has occurred.
9. Soft reset the sensor by sending 0xFE.
10. Wait for soft reset (up to 31 ms. see section 4.3).

11. You can verify that the active resolution has been changed by reading the active state of the advanced user register
as described above (6.3.1, steps 1 and 2).

EEPROM cells can be overwritten thousands of times, but it is advised to limit the writing to the EEPROM to the minimum.

6 With the exception of the sensors of the SLQ-QTxxx series.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 27/34

6.4 Change Calibration Field

Many liquid flow sensors hold two or more calibrations. Each calibration is stored in a separate calibration field. The active
calibration field is determined by the selector setting, bits <6:4> of the user register. The active calibration field can be changed
in the user register to effect all following measurements until it is changed again or the sensor is reset.

Alternatively, the default calibration field (i.e. the active calibration field at power up) can be changed in the default boot content
of the user register in the sensor’s EEPROM to be in effect permanently after the next system reboot.

Follow the instructions below and see section 5.2, or section 5.4 for changing the register directly or the default boot content
respectively.

Additionally, the default active calibration field at boot time can also be changed using the USB-RS485 Sensor Viewer with the
SCC1-USB sensor cable. The USB-RS485 Sensor Viewer is available in the download center on the Sensirion liquid flow
webpage.

Typically, the active calibration field is changed in the register during evaluation and if more than one calibrations are needed
during operation.

If the same calibration is to be used at any time during operation the default boot content of the user register can be changed in
the EEPROM during installation (one time change).

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Default User register x15 x14 x13 x12 x11 x10 x9 x8 x7 0 0 0 x3 x2 x1 x0

Do not change!

selector
active

calibration
field

Do not change!

Changed user register for active calibration field 1 x15 x14 x13 x12 x11 x10 x9 x8 x7 0 0 1 x3 x2 x1 x0

6.4.1 Change Active Calibration Field

To change the sensor’s active calibration field, the flowing steps have to be performed. The detailed register read/write
sequences are explained in sections 5.2 and 5.3.

1. Read the user register and the CRC byte with command 0xE3
2. Save the register entry to a variable in your program.
3. Set ONLY bits <6:4> of this variable to the setting for the new resolution (see section 3.9.1)
4. Write the entire new 16-bit value to the sensor’s register with command 0xE2.
5. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.
6. The new calibration field is active immediately.

6.4.2 Change Default Calibration Field

To change the sensor’s default resolution at boot time the following steps have the be performed to modify the setting in the
default boot content of the user register (see section 3.9.1). The detailed EEPROM read/write sequences are explained in
sections 5.4 and 0.

1. Set the EEPROM’s internal address pointer to address 0x2C0 by sending an I2C write-header followed by the EEPROM
access command (0xFA) and the address from which to read. Full command string: 0x 80 FA 2C 00. (hexadecimal,
assuming the default I2C address, see 0)

2. Read the EEPROM entry (1 word) and the CRC byte by sending an I2C header with R/_W=1

3. Save the EEPROM entry to a variable in your program

4. Set ONLY bits <6:4> of this variable to the setting for the new resolution (see section 3.9.1)

5. Reset the EEPROM’s internal address register to address 0x2C0 by repeating step 1 (the internal pointer has been
incremented by reading the word).

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 28/34

6. Write the new value to the sensor’s EEPROM.

7. Wait for the internal write cycle of 10ms.
8. Reread the EEPROM entry by repeating steps 1 and 2 to verify that the new settings have been applied correctly and

no communication error has occurred.

9. Soft reset the sensor by sending 0xFE.
10. Wait for soft reset (up to 31 ms. see section 4.3).
11. You can verify that the active calibration field has been changed by reading the active state of the user register as

described above (see 6.4.1, steps 1 and 2).

EEPROM cells can be overwritten thousands of times, but it is advised to limit the writing to the EEPROM to the minimum.

6.5 Enable/Disable Hold Master

By default, Sensirion liquid flow sensors perform a master hold state (SCL line is pulled to low) during the measurement. By
releasing the SCL line, the sensor indicates that the measurement is done and it is ready to send the measured value. This
guarantees that the master is notified as soon as the measuremement is done. This blocks the bus for communication to other
sensors during the measurement process.

There may be applications, where a free bus is required during the measurement for communication to other I2C devices.
Another reason to disable the hold master state can be power preservation for battery opperated applications. Without hold
master, the sensor does not hold down the SCL line and therefore no energy is dissipated at the pull-up resistor.

By clearing bit 1 in the advanced user register, the so called “hold-master” may be disabled. The register can either be changed
directly to effect all following measurements until it is changed again or the sensor is reset. Alternatively, the setting can be
changed in the default boot content of the advanced user register in the sensor’s EEPROM to be in effect permanently after the
next system reboot.

Follow the instructions below and see sections 5.2 and 5.4 for changing the register directly or the default boot content
respectively.

Typically, this setting is only changed in the register during evaluation, development and debugging.

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Default advanced user register, hold-master enabled x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 1 x0

Do not change!

ho
ld

-m
as

te
r

D
o

no
t c

ha
ng

e!

Changed register to disable the hold-master x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 0 x0

6.5.1 Change Active Hold Master Setting

To change the sensor’s active hold master setting the flowing steps have to be performed. The detailed register read/write
sequences are explained in sections 5.2 and 5.3.

1. Read the advanced user register and the CRC byte with command 0xE5
2. Save the register entry to a variable in your program.
3. Set/clear ONLY bit 1 of this variable to the new setting
4. Write the entire new 16-bit value to the sensor’s register with command 0xE4.
5. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.
6. The new setting is active immediately.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 29/34

6.5.2 Change Default Hold Master Setting

To change the sensor’s default hold master setting at boot time the following steps have the be performed to modify the setting
in the default boot content of the advanced user register (see 3.9.2). The detailed EEPROM read/write sequences are explained
in sections 5.4 and 0.

1. Set the EEPROM’s internal address pointer to address 0x2C1 by sending an I2C write-header followed by the EEPROM
access command (0xFA) and the address from which to read. Full command string: 0x 80 FA 2C 10. (hexadecimal,
assuming the default I2C address, see 0)

2. Read the EEPROM entry (1 word) and the CRC byte by sending an I2C header with R/_W=1
3. Save the EEPROM entry to a variable in your program

4. Set/Clear ONLY bit 1 of this variable to the setting for the new resolution (see section 3.9.2)

5. Reset the EEPROM’s internal address register to address 0x2C1 by repeating step 1 (the internal pointer has been
incremented by reading the word).

6. Write the new value to the sensor’s EEPROM.
7. Wait for the internal write cycle of 10ms.

8. Reread the EEPROM entry by repeating steps 1 and 2 to verify that the new settings have been applied correctly and
no communication error has occurred.

9. Soft reset the sensor by sending 0xFE.

10. Wait for soft reset (up to 31 ms. see section 4.3).
11. You can verify that the hold master setting has been changed by reading the active state of the advanced user register

as described above (see 6.5.1, steps 1 and 2).

EEPROM cells can be overwritten thousands of times, but it is advised to limit the writing to the EEPROM to the minimum.

6.6 Heater Control

All Sensirion liquid flow sensors use the microthermal flow measurement principle. A micro-heater, integrated on the sensor’s
CMOSens® chip, introduces a tiny amount of heat into the liquid. The flow dependent heat profile is picked up by the nearby
temperature sensors and their signals are used to measure the liquid’s flow rate and direction.

In most applications it is not necessary to actively control the heater’s state. It is sufficient to keep the heater turned on at all
times and, possibly, account for the fact that the heater is being turned on with the first flow measurement. If you have reasons
to believe that active heater control might be necessary in your application, contact Sensirion for support.

The behaviour of the micro-heater is controlled by bit 12 of the advanced user register. If the bit is set, the heater is kept powered
up after a measurement. If the bit is cleared the heater is powered down after a measurement.

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Default advanced user register, heater turned on x15 x14 x13 1 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Do not change!

he
at

er
 s

et
tin

g

Do not change!

Changed register to power down the heater after the
next measurement

x15 x14 x13 0 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

Because bit 12 controls the behaviour of the heater’s power after a measurement, it is necessary to follow any change of the
register setting by a dummy measurement to switch the heater’s power on or off.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 30/34

If the regular measurement is performed at a high resolution setting and therefore takes a longer time, the active resolution
could be changed to 9 bit to achieve the shortest possible duration of the dummy measurement.

6.6.1 Heater Mode On

To set the heater mode to permanently on, the following steps have to be performed:

1. Read the advanced user register and the CRC byte with command 0xE5.
2. Save the register entry to a variable in your program.
3. Set ONLY bit 12 of the variable to 1.
4. Write the entire new 16-bit value to the register with command 0xE4.
5. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.
6. Perform one dummy measurement with command 0xF1 to apply the setting and turn the heater on.

6.6.2 Heater Mode Off

To set the heater mode permanently off, the following steps have to be performed:

1. Read the advanced user register and the CRC byte with command 0xE5.
2. Save the register entry to a variable in your program.
3. Clear ONLY bit 12 of the variable to 0.
4. Write the new 16-bit value to the register with command 0xE4.
5. Reread the register to verify that the new settings have been applied correctly and no communication error has occurred.
6. Perform one dummy measurement with command 0xF1 to apply the setting and turn the heater off.

6.7 Change I2C Address
The sensor’s I2C device address is stored in the sensor chip’s EEPROM. By default, this address is preset to a fix address
(0x40). It might be needed to change this address in order to use the sensor with other I2C components on the same bus. To
change the I2C address, it is required to overwrite the default content in the EEPROM and reboot the sensor. There is no option
to change the I2C address in a (volatile) register.

The following steps have to be performed:

1. Set the EEPROM’s internal address pointer to address 0x2C2 by sending an I2C write-header followed by the EEPROM
access command (0xFA) and the address from which to read. Full command string: 0x 80 FA 2C 20. (hexadecimal,
assuming the default I2C address, see section 0)

2. Read the EEPROM entry (1 word) and the CRC byte by sending an I2C header with R/_W=1.
3. Save the EEPROM entry to a variable in your program
4. Define the new EEPROM entry according to the desired setting. (see below)

5. Reset the EEPROM’s internal address register to address 0x2C2 by repeating step 1 (the internal pointer has been
incremented by reading the word).

6. Write the new value to the EEPROM at the same address. (see 5.4 and example 6.7.2)
7. Wait 10ms for the internal write cycle to complete.

8. Reread the EEPROM entry by repeating steps 1 and 2 to verify that the new settings have been applied correctly and
no communication error has occurred.

9. Soft reset the sensor by sending 0xFE.
10. Wait for soft reset. (up to 31 ms., see section 4.3)
11. Verify that the I2C device address has been changed by communicating with the sensor at the new address.

EEPROM cells can be overwritten thousands of times, but it is advised to limit the writing to the EEPROM to the minimum.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 31/34

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Default EEPROM Word (16 bit) at 0x2C2 x15 x14 x13 x12 x11 x10 1 0 0 0 0 0 0 x2 x1 x0

Do not change!
I2C device address

of sensor chip
Do not

change!

Changed Address (Example 0x41) x15 x14 x13 x12 x11 x10 1 0 0 0 0 0 1 x2 x1 x0

After writing to the EEPROM it is not possible to reset to the factory settings. Do not write to any other field of the
EEPROM. This may destroy the configuration and calibration of the system. Sensirion disclaims any warranty for
sensors with changed EEPROM entries other than the I2C address.

6.7.1 Reserved I2C device addresses

The I2C address range for devices with a seven-bit address is 0x0 through 0x7F. However, this range is not entirely available.
Device address 0x0 is blocked in the sensor itself. On top of that, addresses 0x0 through 0x7 and 0x78 through 0x7F are special
and reserved addresses in the I2C protocol. It is strongly advised to choose an address in the range from 0x8 through 0x77
when changing the device address.

6.7.2 Example Communication Sequence to Change the I2C Address

In this example we change the I2C device address from 0x40 to 0x21 in ten steps.

Step Master Slave Description

1 0x80 FA 2C 20 (4 x ACK) Master addresses the sensor and sets the pointer to EEPROM address 0x2C2

2 0x81 (1 x ACK) Master addresses the sensor again, but now to read from the Sensor

3 (3 x ACK) 02 07 CRC Sensor returns the EEPROM data of address 0x2C2 and a CRC byte (note that device
address at bit <9:3> is 0x40 and that bit <2:0> are b111).
Do not continue to the next step if unexpected values are read!

4 0x80 FA 2C 20 (4 x ACK) Master addresses the sensor again and sets the pointer to EEPROM address 0x2C2

5 0x01 0F (2 x ACK) Master writes new device address (0x21) to bit <9:3> and b111 to bit <2:0> into the
EEPROM

6 - - Wait for the internal write cycle of 10ms

7 0x80 FA 2C 20
81
(3 x ACK)

(4 x ACK)
(1 x ACK)
01 0F CRC

Repeat step 1-3 and check EEPROM data of address 0x2C2. Note that the sensor still
has to be addressed with the old address since the device has not been powered down
or reset. However, EEPROM data has been successfully changed to 0x01 0F.

8 0x80 FE (2 x ACK) Soft reset. Power down is also possible.

9 0x80 (1 x NACK) Master checks if the I2C device address is changed by addressing the sensor with the
old address. The master receives a NACK

10 0x42 (1 x ACK) Master addresses the sensor with address 0x21 and sensor responds with an ACK.
The I2C device address has been changed successfully

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 32/34

6.8 Access Free EEPROM Space

Calibration data and all settings of the sensor are stored in the embedded EEPROM of the sensor chip. 31 words of 16 bit in the
EEPROM are free to be accessed by the user. The rest of the EEPROM must not be overwritten, because the configuration and
calibration of the sensor could be affected and the sensor might become irreversibly damaged.

To access the free space in the EEPROM, the following steps have to be performed:
1. Set the EEPROM’s internal address pointer to respective address by sending an I2C write-header followed by the

EEPROM access command (0xFA) and the address from which to read. Full command string: 0x 80 FA XX X0.
(hexadecimal, assuming the default I2C address, see section 0 and 0xXXX is the desired address within the free
EEPROM space.)

2. Read the EEPROM entry (1 word) and the CRC byte.
3. Define the new EEPROM entry according to the desired content.
4. Reset the EEPROM’s internal address register to the desired address by repeating step 1 (the internal pointer has

been incremented by reading the word).
5. Write the new value to the relevant EEPROM address.
6. Reread the EEPROM entry at the relevant EEPROM address to confirm that the correct data has been written.

Steps 1 and 2 can be skipped if the entire word shall be overwritten completely.

The calibration of the sensor is done for specific sensor settings. Changing the EEPROM content may change
the calibration and lead to non-interpretable sensor measurements. Overwriting the default boot content

changes, the sensor settings irreversibly and may turn the sensor useless. Sensirion disclaims any warranty for
sensors with changed EEPROM content. Do not write to any other field than the free space of the EEPROM. This may
destroy the configuration and calibration of the system.

Wordadr
#Words
(16 bit) Description/Format

0xFE0 - 0xFFE 31 Free space in EEPROM

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 33/34

7. Error Handling

We strongly recommend implementing handling procedures for the possible error cases outlined below.

7.1 Sensor to Master Data Corruption (Checksum Error)
When reading measurement data, register or EEPROM content, check the CRC byte after every two bytes of data (as described
in section 3.7). If incorrect, repeat the measurement or reread the register/EEPROM.

Possible causes for checksum errors include
 incorrect implementation of the checksum computation on the master
 overlapping commands on the communication bus. For instance, if the master sends the next command before the

reply to the previous command has arrived, the reply from the slave may overlap with that next command sent by the
master

 several devices on the bus have the same address and their replies to a command overlap
 communication is disturbed by electrical interference from very harsh electromagnetic environments.

7.2 Master to Sensor Data Corruption
It is also possible that data that is sent from the master to the sensor is corrupted in any conceivable way. Since the sensor does
not implement a master to sensor checksum, a corrupted command or value is not detected automatically. Therefore, it is
recommended to read back the register and EEPROM after writing a change.

Even though it is possible to start a new measurement with a read header (which is not acknowledged by the sensor), it is
advisable to send the command 0xF1 to trigger the flow measurement before each start of a new measurement because corrupt
communication could potentially be interpreted by the sensor as a different command and cause the sensor to leave the
measurement mode.

7.3 Sensor Timeout
We recommend to implement a timeout for all communication with the sensor. Should the sensor not respond after the chosen
timeout time, the sensor can either be hard reset immediately or after it does not respond to a test command (e.g. 0xF1).

If the sensor does not end the hold master condition and blocks the bus indefinitely after a measurement has been started, the
only solution is to perform a hard reset.

Note: A frozen sensor is very unlikely and most customers will never experience it in their application. However, implementing
the timeout and hard reset (as described in section 2.4) is strongly recommended for all applications that cannot accept a full
system reset in the case of a sensor freeze.

7.4 SDA High after Stop Condition
Interference on the communication can cause the sensor to miss a Stop Condition issued by the master. Therefore, we suggest
to check that the SDA line is HIGH after the Stop Condition. In case of a failure, the sensor still wants to send data and pulls
down the SDA line.

To resolve this failure case, the master must clock the SCL line 9 more times while keeping the SDA line high. With a I2C library
this can be realized by issuing a read without ACK.

Alternatively, a hard reset will also resolve this failure case and might be necessary if clocking SCL does not help.

Implementation Guide to I2C for Liquid Flow Sensors

www.sensirion.com Version 1 – June 2021 – Public D1 34/34

Revision History

Date Version Changes

October 2017 1 First Version

Headquarter and Subsidiaries

Sensirion AG
Laubisruetistr. 50
CH-8712 Staefa ZH
Switzerland

phone: +41 44 306 40 00
fax: +41 44 306 40 30
info@sensirion.com
www.sensirion.com

Sensirion Inc., USA
phone: +1 312 690 5858
info-us@sensirion.com
www.sensirion.com

Sensirion Korea Co. Ltd.
phone: +82 31 337 7700~3
info-kr@sensirion.com
www.sensirion.co.kr

Sensirion Japan Co. Ltd.
phone: +81 3 3444 4940
info-jp@sensirion.com
www.sensirion.co.jp

Sensirion China Co. Ltd.
phone: +86 755 8252 1501
info-cn@sensirion.com
www.sensirion.com.cn

Sensirion Taiwan Co. Ltd
phone: +886 3 5506701
info@sensirion.com
www.sensirion.com To find your local representative, please visit www.sensirion.com/distributors

