Your Contact to Sensirion

Umschlag

Contact

Contact our sensor experts:

Please contact us

Distributoren

Distributors & Representatives

Here you find the nearest distributor and/or representative in your area.

Learn more

Support Center

Please find here an overview of various support topics:

Go to Support Center

Standorte

Locations

Find out where we are located:

Our Locations

toggle menu
  • Home
  • Environmental Sensors
    • Humidity Sensors
      • Digital Humidity Sensor SHT4x (RH/T)
      • Digital Humidity Sensor SHT3x (RH/T)
      • Digital Humidity Sensor SHT85 (RH/T)
      • Digital Humidity Sensor SHTC3 (RH/T)
      • Digital Humidity Sensor SHTC1 (RH/T)
      • Digital Humidity and Temperature Module SCC30-DB (RH/T)
      • SF2 Filter Cap
      • SHT31 Smart Gadget Development Kit
      • Digital Humidity Sensor SHTW2 (RH/T) (NRND)
    • Temperature Sensors
      • Temperature Sensor STS3x
      • Temperature Sensor STS32 / STS33
    • Multi-Pixel Gas Sensors SGP
      • VOC Sensor SGP40
      • VOC Sensor SGP30 / SGPC3 (NRND)
      • Multi-Gas, Humidity and Temperature Module SVM30 (NRND)
    • Particulate Matter Sensor SPS30
    • Carbon Dioxide Sensors
      • Carbon Dioxide Sensor SCD4x
      • Carbon Dioxide Sensor SCD30
      • Carbon Dioxide Sensor STC31
    • SFA30 Formaldehyde Sensor Module
    • Nubo Air
    • Evaluation Kit SEK-Environmental Sensing
      • Evaluation Kit SEK-SCD41
      • Evaluation Kit SEK-SVM40
      • Evaluation Kit SEK-SFA30
    • Download Center
    • Support Center
    • Shop
  • Flow Sensors
    • Liquid Flow Meters
      • Lx – Compact Liquid Flow Meters
        • Liquid Flow Meter LG16
        • Liquid Flow Meter LG01
        • Liquid Flow Meter LS32-1500
      • SLx – Standalone Liquid Flow Meters
        • Liquid Flow Meter SLI
        • Liquid Flow Meter SLG
        • Liquid Flow Meter SLQ-QT105
        • Liquid Flow Meter SLQ-QT500
        • Liquid Flow Meter SLS-1500
      • Liquid Flow Sensor SLF3x
      • Liquid Flow Sensor LPG10
      • Liquid Flow Sensor LD20
      • Liquid Flow Meter Kits
      • Customized (OEM) Liquid Flow Meters
    • Mass Flow Meters for Gases
      • Mass Flow Meter SFM3000
      • Mass Flow Meters SFM3003 and SFM3013
      • Mass Flow Meter SFM3019
      • Mass Flow Meter SFM3100
      • Mass Flow Meter SFM3119
      • Mass Flow Meter SFM3200
      • Mass Flow Meter SFM3300
      • Mass Flow Meter SFM3400
      • Mass Flow Meter SFM4100
      • Mass Flow Meter SFM4200
      • Mass Flow Meter SFM4300
      • Mass Flow Meter SFM5300
      • Mass Flow Meter SFM5400
      • Mass Flow Meter Evaluation Kits
      • Customized (OEM) Mass Flow Meters
    • Mass Flow Controllers for Gases
      • Mass Flow Controller SFC5500
      • Mass Flow Controller SFC5400
      • Mass Flow Controller SFC5300
      • Customized (OEM) Mass Flow Controllers
      • Evaluation Kit EK-F5x
    • Gas Meter Modules
    • Differential Pressure Sensors
      • Differential Pressure Sensor SDP3x
      • Differential Pressure Sensors SDP800 Series
      • Differential Pressure Sensor SDP2000
      • Fail-Safe Integration with Differential Pressure Sensors
      • Evaluation Kit EK-P4
      • Evaluation Kit EK-P5
    • Download Center
    • Support Center
    • Shop
    • Evaluation Kit SEK-Flow Sensing
  • Markets
    • Automotive
    • Industrial
      • Indoor Air Quality
      • Life Sciences, Diagnostics and Analytical Instruments
      • H2 Measurement
      • Combustion Process Monitoring
    • Medical
      • Ventilation
      • Smart Inhaler
    • Consumer
      • Indoor Air Quality
  • About us
    • Sensirion – The Sensor Company
      • Company
      • Locations
      • Growth Drivers
      • Distribution Network
      • Executive Committee
      • Board of Directors
      • CMOSens® Technology
      • MOXSens® Technology
      • PASens® Technology
    • Newsroom
      • News and Press Releases
      • Trade Fairs 2021
      • Newsletter
      • Specialist Articles
      • Webinars
    • Brand Experience Portal
    • Sensirion Automotive Solutions
    • Investor Relations
    • Quality & Sustainability
    • Supplier Portal
    • Support Center
    • Partner Access
  • Career
    • Your Start
      • Professionals
      • Graduates
      • Students
      • Apprentices
      • Job Profiles
    • Career Openings
      • Employee
      • Internship
      • Apprentice
      • Sensirion Student Pool
      • Login applicant's portal
    • Employer Sensirion
      • Your Workplace
      • Our Values
      • Success Stories
      • Benefits
      • Career Opportunities
      • Employees Tell Their Stories
      • Career Videos
    • Great Place to Work®
    • Career Events 2021
    • Career News
    • Job Newsletter
    • Alumni Group
    • Student Ambassadors
    • Contact Recruiting Manager
  • Developers
  • ENG
  • DEU
  • CHI
  • JPN

No translation available

Sorry, this page is not available in English.

Continue to home page

Keine Übersetzung verfügbar

Leider ist diese Seite nicht in Deutsch verfügbar.

Weiter zur Startseite

本页没有翻译

抱歉,本页没有英文翻译

继续浏览主页

和訳はありません

申し訳ありません。このページの和訳はありません

ホームページに戻る

    联系方式

    search
    cart
    下载中心 立即购买 投资者
    Sensirion AG Switzerland
    • Home
    • Environmental Sensors
      • Humidity Sensors
        • Digital Humidity Sensor SHT4x (RH/T)
        • Digital Humidity Sensor SHT3x (RH/T)
        • Digital Humidity Sensor SHT85 (RH/T)
        • Digital Humidity Sensor SHTC3 (RH/T)
        • Digital Humidity Sensor SHTC1 (RH/T)
        • Digital Humidity and Temperature Module SCC30-DB (RH/T)
        • SF2 Filter Cap
        • SHT31 Smart Gadget Development Kit
        • Digital Humidity Sensor SHTW2 (RH/T) (NRND)
      • Temperature Sensors
        • Temperature Sensor STS3x
        • Temperature Sensor STS32 / STS33
      • Multi-Pixel Gas Sensors SGP
        • VOC Sensor SGP40
        • VOC Sensor SGP30 / SGPC3 (NRND)
        • Multi-Gas, Humidity and Temperature Module SVM30 (NRND)
      • Particulate Matter Sensor SPS30
      • Carbon Dioxide Sensors
        • Carbon Dioxide Sensor SCD4x
        • Carbon Dioxide Sensor SCD30
        • Carbon Dioxide Sensor STC31
      • SFA30 Formaldehyde Sensor Module
      • Nubo Air
      • Evaluation Kit SEK-Environmental Sensing
        • Evaluation Kit SEK-SCD41
        • Evaluation Kit SEK-SVM40
        • Evaluation Kit SEK-SFA30
      • Download Center
      • Support Center
      • Shop
      • Formaldehyde Sensor SFA30

        Formaldehyde Sensing Made Easy

        The SFA30 is Sensirion’s new digital formaldehyde sensor designed for easy integration into air purifiers, demand-controlled ventilation systems, or indoor air quality monitors. Based on Sensirion’s electrochemical technology, the SFA30 offers excellent formaldehyde sensing performance with a uniquely low cross-sensitivity to other VOCs. The sensor module’s on-board SHT sensor provides accurate humidity and temperature readings and enables a fully temperature/humidity compensated and factory calibrated formaldehyde concentration output in ppb.

        More

    • Flow Sensors
      • Liquid Flow Meters
        • Lx – Compact Liquid Flow Meters
          • Liquid Flow Meter LG16
          • Liquid Flow Meter LG01
          • Liquid Flow Meter LS32-1500
        • SLx – Standalone Liquid Flow Meters
          • Liquid Flow Meter SLI
          • Liquid Flow Meter SLG
          • Liquid Flow Meter SLQ-QT105
          • Liquid Flow Meter SLQ-QT500
          • Liquid Flow Meter SLS-1500
        • Liquid Flow Sensor SLF3x
        • Liquid Flow Sensor LPG10
        • Liquid Flow Sensor LD20
        • Liquid Flow Meter Kits
        • Customized (OEM) Liquid Flow Meters
      • Mass Flow Meters for Gases
        • Mass Flow Meter SFM3000
        • Mass Flow Meters SFM3003 and SFM3013
        • Mass Flow Meter SFM3019
        • Mass Flow Meter SFM3100
        • Mass Flow Meter SFM3119
        • Mass Flow Meter SFM3200
        • Mass Flow Meter SFM3300
        • Mass Flow Meter SFM3400
        • Mass Flow Meter SFM4100
        • Mass Flow Meter SFM4200
        • Mass Flow Meter SFM4300
        • Mass Flow Meter SFM5300
        • Mass Flow Meter SFM5400
        • Mass Flow Meter Evaluation Kits
        • Customized (OEM) Mass Flow Meters
      • Mass Flow Controllers for Gases
        • Mass Flow Controller SFC5500
        • Mass Flow Controller SFC5400
        • Mass Flow Controller SFC5300
        • Customized (OEM) Mass Flow Controllers
        • Evaluation Kit EK-F5x
      • Gas Meter Modules
      • Differential Pressure Sensors
        • Differential Pressure Sensor SDP3x
        • Differential Pressure Sensors SDP800 Series
        • Differential Pressure Sensor SDP2000
        • Fail-Safe Integration with Differential Pressure Sensors
        • Evaluation Kit EK-P4
        • Evaluation Kit EK-P5
      • Download Center
      • Support Center
      • Shop
      • Evaluation Kit SEK-Flow Sensing
      • Product Highlight

        Evaluation kit for the single-use liquid flow sensor LD20-2600B

        The LD20-2600B single-use liquid flow sensor for fast, precise and reliable measurements of the lowest flow rates in biomedical applications was successfully launched three years ago. The evaluation kit for this OEM liquid flow sensor can now also be purchased online via Sensirion's distribution network.

        Read more

    • Markets
      • Automotive
      • Industrial
        • Indoor Air Quality
        • Life Sciences, Diagnostics and Analytical Instruments
        • H2 Measurement
        • Combustion Process Monitoring
      • Medical
        • Ventilation
        • Smart Inhaler
      • Consumer
        • Indoor Air Quality
      • Our Markets

        Sensirion Markets Icons

        Experts for Smart Sensor Solutions

        Sensirion's sensors are used in a wide range of markets and different applications. Our high-quality environmental and flow sensors and sensor solutions improve energy efficiency and sustainability. They increase our safety, support our health and raise the quality of life. 

        Read more

    • About us
      • Sensirion – The Sensor Company
        • Company
        • Locations
        • Growth Drivers
        • Distribution Network
        • Executive Committee
        • Board of Directors
        • CMOSens® Technology
        • MOXSens® Technology
        • PASens® Technology
      • Newsroom
        • News and Press Releases
        • Trade Fairs 2021
        • Newsletter
        • Specialist Articles
        • Webinars
      • Brand Experience Portal
      • Sensirion Automotive Solutions
      • Investor Relations
      • Quality & Sustainability
      • Supplier Portal
      • Support Center
      • Partner Access
      • Sensirion – The Sensor Company

        Sensirion Worldmap

        Sensirion Worldwide

        Founded in 1998 Sensirion has become the leading manufacturer of flow and environmental sensors solutions. The company now employs people in various countries such as the USA, South Korea, Japan, China, Taiwan, and Germany. The headquarters in Switzerland is responsible for research, development, and production. 

        Read more

    • Career
      • Your Start
        • Professionals
        • Graduates
        • Students
        • Apprentices
        • Job Profiles
      • Career Openings
        • Employee
        • Internship
        • Apprentice
        • Sensirion Student Pool
        • Login applicant's portal
      • Employer Sensirion
        • Your Workplace
        • Our Values
        • Success Stories
        • Benefits
        • Career Opportunities
        • Employees Tell Their Stories
        • Career Videos
      • Great Place to Work®
      • Career Events 2021
      • Career News
      • Job Newsletter
      • Alumni Group
      • Student Ambassadors
      • Contact Recruiting Manager
      • Most Popular Employer in Switzerland 2019

        Learn more: www.sensirion.com/GPTW

         

        Top Career Openings:

        • Product Manager Gas Flow & Differential Pressure Sensors
        • IT Client Engineer
        • Natural Scientist with Hands-on Mentality

         


        All our career openings

    • Developers
    Sensirion AG Switzerland
    • Flow Measurement in Smart Inhalers

      Specialist Article

    • Home
    • About us
    • Newsroom
    • Specialist Articles

    Flow Measurement in Smart Inhalers for Connected Drug Delivery

    Author: Andreas Alt, Sales Director Medical

    Inhalers are among the most commonly used devices for treating respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). With each inhalation through the inhaler, the device delivers a specific amount of medication to the lungs. However, when it comes to proper inhaler use, misuse is the norm.

    It is well documented that patients often have problems adopting the correct inhaler technique and thus receive insufficient medication. This applies equally to both metered dose inhalers (MDIs) and dry powder inhalers (DPIs) and leads to poor disease control and increased healthcare costs, either as a result of uncontrolled disease, increased drug utilization for relief medication, preventative therapy or emergency department visits. This remains a common problem in both asthma and COPD [1], [2].

    Global annual costs associated with asthma and COPD management is substantial from both the healthcare payer and the societal perspective. Research findings show that healthcare spending for an uncontrolled patient is more than double that of a controlled patient [3]. Studies have also found that patients make at least one mistake during inhaler drug intake as often as 70% to 90% of the time, resulting in only 7% to 40% of the drug being delivered to the lungs [4]. The two biggest and most serious errors when using an MDI are both related to patient inhalation. The first error is related to the coordination between inhalation and triggering the dose release of the inhaler. Even a short delay can result in only 20% of the medication being delivered to the lungs [4]. The second most significant error is not breathing deeply enough, which can cause another 10% less medication to reach the lungs [4].

    The opportunity for technological innovation to reduce these common errors by measuring patient inhalation airflow through the inhaler device is already available today and allows for increased drug delivery efficacy, improved medication adherence, reduced healthcare costs and, ultimately, improved patient outcomes.

    Why Measure the Inhalation Flow Profile?

    As discussed above, the two biggest and most serious errors in using inhalers are related to patient inhalation. By measuring the inhaled airflow through the inhaler, and additionally registering the point in time when the drug is dispensed for MDIs, allows information on whether the drug was released within the optimal window of the inhalation cycle to be accurately determined (see Figure 1). This dose-trigger timing versus flow correlation is one critical parameter to understanding if the drug carrying flow reached deep into the bronchia and achieved the desired high lung deposition (see Figure 2).

     

     

    Figure 1. Inhalation flow profile showing the calibrated flow rate in standard liters per minute (l/min) versus the inhalation time in seconds (s).
    Figure 2. Schematic illustration of drug deposition when the drug is released in the optimal timing window (left side) and when the drug is released too late (right side).

    The second critical parameter is the inhaled airflow profile. Borrowing from spirometry, several parameters can be derived from the inhalation airflow profile that provide insights into each patient's inhalation:

    • Depth and length of inhalation
    • Entire exhalation before inhaling
    • Slow inhalation according to instructions
    • Lung function and its development over time

     

    Accurate and calibrated real-time recordings of the inhalation flow profile provide the information above, from which it can be determined whether the patient carried out the inhalation correctly and achieved a high lung deposition during inhalation. Other parameters of interest include the inspired vital capacity (IVC) and peak inspired flow rate (PIF), along with the full inhalation airflow characteristic as shown in Figure 3.

    Figure 3. Parameters derived from the inhalation airflow characteristic: inspired vital capacity (IVC) and peak inspired flow rate (PIF).

    Subsets of parameters such as forced inspired volume during the first second of inhalation (FIV1) or the airway resistance (RAW) can also be determined from the inhalation airflow profile. The derivation of the latter is shown in Figure 4.

     

     

    Figure 4. Besides the peak inspired airflow (PIF), the airway resistance (RAW) can be determined from calibrated inhalation airflow characteristics recorded with a sufficient high temporal and flow resolution.
    Figure 5. Typical spirometer plot of flow rate versus inhaled volume. The inspired vital capacity (IVC) is the total inhaled volume as the flow rate returns to zero at the end of the inhalation.

    Some parameters such as airway resistance (RAW) can be of special interest for patients with chronic obstructive pulmonary diseases (COPD) as it may relate directly to the condition of the disease. As the inhaler is now being utilized as a spirometer-like device, all parameters are derived upon use of the inhaler without any additional effort or time-related burden to the patient. Besides monitoring every inhalation through the inhaler for its quality and the correct use of the inhaler, the above parameters monitored over time can additionally provide feedback on the effectiveness of the medication, the course of the disease and alert the healthcare professional or be motivational for the patient and increase adherence.

    Cohero Health already provides patients with an additional spirometer for exactly this reason, i.e. to allow the patients to routinely measure their lung function over the course of the treatment. The benefit of providing direct disease management and sharing this data with medical professionals helps patients and clinicians to assess treatment progress and also enables payment-by-results rather than pay-per-dose. This same development can be observed in the insulin or sleep apnea industry where it has led to growing market shares for companies offering connected devices in recent years and simultaneously brought down treatment costs and improved patient outcomes. Most importantly, this combination of drug delivery and diagnostic unit in a single device is a powerful tool in improving patient outcomes. Figure 6 shows the schematic behavior of PIF, IVC and RAW versus time. It visualizes the positive effect of starting the treatment, the stable treatment phase during regular dosage and the negative effect of interrupting the treatment.

    Figure 6. Peak inspired airflow (PIF), inspired vital capacity (IVC) and airway resistance (RAW) monitored over time, providing valuable feedback to the healthcare professional and the patient.

    By adding the capability of measuring flow to the drug delivery inhaler device, not only can patient compliance and correct use of the inhaler be monitored, but also the effectiveness of the medication and course of the disease over time can be observed by utilizing the spirometer-like lung function recordings. Next generation inhalers - natively incorporating airflow measurements in their design - will facilitate automatic dose release at the optimal point in time, individually tailored to the patient and their specific condition.

     

     

    How to Measure the Inhalation Flow Profile

    Before inhalers natively include electronics and connectivity features by design, existing inhalers and inhaler platforms can be enhanced with the required electronics to achieve connectivity and the required sensing functionality. This is already being done today by companies such as Propeller Health, Adherium and others that have designed a variety of clip-ons for existing inhalers to add connectivity by monitoring parameters such as date and time of usage as well as evaluating signals from additional sensors such as accelerometers, GPS and many more. In the past, accurate measurement of the flow through the inhaler was challenging due to the lack of sufficiently robust and yet sensitive devices capable of measuring the smallest flows. In order to avoid revalidation of the inhaler with the FDA and maintain approval, the key regulatory requirement for all inhaler clip-ons demands that the flow path of the inhaler remains unaltered in order to ensure that it does not interfere with the existing inhaler device function.

    In order to demonstrate how accurate flow measurement through an inhaler can be realized without interfering with the flow path, a functional inhaler clip-on has been developed by Sensirion. Figure 7 shows the 3D-printed inhaler clip-on containing the Sensirion flow sensor SDP3x as well as a Bluetooth low energy communications chip and a battery power source. It is notable that the inhaler housing has not been altered in any way and the flow measurement principle relies solely on the Venturi/Bernoulli principle at the inhaler inlet. The calibrated inhaler airflow shows excellent agreement to an external flow reference and was used for obtaining the flow profiles depicted in this article.

    Figure 7. 3D-printed inhaler clip-on containing the Sensirion flow sensor SDP3x in the side view (left) and top view (right) showing the unobstructed flow path of the inhaler.

    The unaltered and unobstructed inhaler flow path design is enabled by the extreme sensitivity of the Sensirion MEMS-based (micro electro mechanical system) flow chip solution utilized in the SDP3x flow sensor series. This technology is based on the microthermal flow-through principle, the next generation hotwire flow sensor technology that has been successfully used in medical ventilators for decades. In clip-ons for existing inhalers as well as newly developed inhalers, the key advantages of Sensirion's CMOSens® flow chip technology can be summarized as: 

    • Highest sensitivity down to hundredths of a Pascal
    • High temporal and pressure/flow accuracy
    • Proven device in the medical and automotive industry
    • Robust against being dropped and ultra-sonic welding process steps
    • Inherently robust against external disturbances by the two-port design
    • Low power consumption for portable and battery operation
    • World's smallest commercially available flow sensor

     

    This makes the Sensirion SDP3x flow sensor series the flow sensor solution of choice for accurately measuring the inhalation flow profile in inhalation devices.

    Outlook

    Adding a diagnostic unit to the drug delivery device that the patient is already familiar with is a powerful tool in asthma and COPD disease management. Improper inhalation technique leads to decreased efficacy through reduced deposition of drug in the lungs, which in turn leads to increasing disease severity and thus a worse patient outcome and an increase in healthcare costs. The solution of guiding the patient and providing direct feedback as well as supporting the patient in controlling the disease and increasing adherence have already been shown to improve patient outcomes by current connected drug delivery devices.

    Thus, robust and accurate flow measurement is an important feature towards better disease management and patient outcomes and is already realizable today. The high percentage of patients suffering from asthma or COPD and misusing their inhaler when a life free of complaints would generally be possible with proper disease management will continue to drive innovation for connected drug delivery. An increasing number of companies are implementing digital technologies in their products already today to provide an enhanced method of managing asthma and COPD as well as improving the effectiveness of medication. Supporting the patient with the optimal treatment of their disease, not solely as a simple medical tool but as a companion device to remind, coach and provide relevant insight into the treatment and the course of the disease, is the direction in which the industry is advancing.


    Print Version of the Article

    • Sensirion Specialist Article Flow Measurement in Smart Inhalers EN.pdf

    Related Products

    Sensirion Differential Pressure Sensors SDP3x

    Differential Pressure Sensor SDP3x

    The SDP3x differential pressure sensor measures just 5mm x 8mm x 5mm, opening up new dimensions of integration and applications possibilities. It features excellent accuracy and long-term stability.

    Your Contact to Sensirion

    Umschlag

    Contact

    Contact our sensor experts:

    Please contact us

    Distributoren

    Distributors & Representatives

    Here you find the nearest distributor and/or representative in your area.

    Learn more

    Support Center

    Please find here an overview of various support topics:

    Go to Support Center

    Standorte

    Locations

    Find out where we are located:

    Our Locations

    Please Find Here Various Support Topics

    Buy Our Products at Your Local Distributor

    About Sensirion

    Environmental Sensors

    Flow Sensors

    Media/Newsroom

    Investors

    Useful Links

    Sensirion Automotive Solutions

    Career

    Support Center

    Partner Access

    General

    Terms and Conditions

    Terms and Conditions for US Customers

    Supplier Social Responsibility

    Quality, Environment and Ethics

    Sensirion AG

    Laubisruetistrasse 50

    8712 Staefa ZH, Switzerland

    Tel. +41 44 306 40 00

    infosensirioncom

    2021 © Sensirion AG Switzerland
    • Home
    • Sitemap
    • Privacy Policy and Cookies
    • Imprint
    • Login
    • Disclaimer